Showing posts with label The Translation Partition Function. Show all posts
Showing posts with label The Translation Partition Function. Show all posts

THE TRANSLATIONAL PARTITION FUNCTION

An expression for translational partition function can be derived as follows. According to definitions,

   q trans = ∑ ɡtrans  e−∈trans/kT

For each translational energy level, there can be only one energy state, i.e ɡ trans = 1.

q trans = ∑e −  ∈trans 
                            kT

The particles can move along anyone of the three coordination. Therefore the net translational partition function can be resolved into three translational partition functions such that,

qtrans = qtrans (x).qtrans (y).qtrans (z)

Where qtrans (x), qtrans (y) and qtrans (z)
are the three Cartesian coordinates. In the equation.

    qtrans = ∑ e⁻∈⨯/kT

It's assumed that the particle is moving along x coordinate only. According to wave mechanics for a particle moving in one dimension, the energy is given by

            ∈χ =  n²h² 
                    8ml²x

Where n = integer (1,2,3......), h = Planck's constant, m = mass of the particle, lₓ= width of the box in which the particle is moving.

   qtrans (x) = ∑ e⁻ⁿ²ʰ²/8ml²ₓ kT

The summation can be evaluated by integration,

        qtrans(x) = ∫₀∞ e⁻   n²h²    
                                        8ml²ₓ KT dn

Put h²/8ml²ₓ kT = a;
qtrans(x) = ∫₀∞ e⁻ᵅⁿ² dn =  1  √π/a
                                               2

Substitute the value of a, we get 

qtrans (x) =1/2   √         π              = 1/2
                              h²/8ml²ₓ kT

 8ml²ₓ kT   = (2πmkT)¹/₂   lₓ 
      h²                                     h

The net translational partition function qtrans is given by 

qtrans = qtrans (x).qtrans(y).qtrans (z) =

(2πmkT)³/₂ lₓ.lᵧ.lz : but lₓ.lᵧ.lz = V
       h²

qtrans = (2πmkT)³/₂ v
                   h³

For an ideal gas V = RT/P, hence 

qtrans = (2πmkT) ³/₂ . RT
                    h³                P