Showing posts with label Variation of Fugacity with pressure and Variation of fugacity with temperature.. Show all posts
Showing posts with label Variation of Fugacity with pressure and Variation of fugacity with temperature.. Show all posts

VARIATION OF FUGACITY WITH PRESSURE AND VARIATION OF FUGACITY WITH TEMPERATURE

VARIATION OF FUGACITY WITH PRESSURE :-                                                                           The relation between μ and fugacity is given by,

μ = μ⁰ + RTlnf................ (1) 

Differentiating the equation (1) write P At constant T, 

(∂μ/∂P)T = RT ( ∂lnf/∂P)T

We know that ,

(∂μ/∂P)/T = V................. (2)

Hence Equation (2) can be written as, 

RT ( ∂lnf)T  = V

RT ∫ ∂lnf/∂P)T = V/P1 dp. = vdp

RT ∫ ∂lnf = V/P2 dp. = vdp

RTln f₂/f₁ = ∫ p₁ᴾ² vdp.

The equation on to the determination of the fugacity at one pressure from that of another, if 'V' is known as a function of pressure. 

VARIATION OF FUGACITY WITH TEMPERATURE :-

                 Consider two states of the same gas in which the chemical potential are μ and μ*. The corresponding fugacities being f and f* it's related equation, 

μ* − μ = RTln f*/f

Dividing by T and rearranged 

Rln f*/f = ( μ*/T) − (μ/T) 

Differentiating write T at constant P

R (∂ln f*/∂T)P − R(∂lnf/∂T) = [ ∂(μ*)]
                                                       T       −
                                                     ∂T
                                                  [∂(μ)]
                                                (       T     ) P
                                                      ∂T

We know that,

[∂(  μ)]
   (    T  )P     = − μ̄/T²
        T
( gibb's Helmoltz equation)

(∂lnf* ) p* − (∂lnf) p  = H̄*/RT² + H̄/RT²
   ∂T                ∂T

When P* → low P, or Zero

P* →0   f*   = 1
              P*
For a real gas at very low P,
Fugacity becomes equal to P. 

Hence f* doesn't change with T at constant P.

(ie) (∂lnf)P   =  H̄*   −  H̄
        ∂T                 RT²

H̄* is the partial molal enthalpy in the state of almost zero pressure and H̄ is the value at P.

H* − H̄ is the increase in partial molal enthalpy accompanying the isothermal expansion of the gas from a pressure ' P' into vacuum.

H̄* − H̄ = − ∫₀p ( ∂H )T dp
                           ∂P

since ( ∂H) T  = − μⱼ.T cp. 
            ∂P

From above the equation, 

RT² [∂lnf ] P = ∫₀p J,T  . Cp. dp
         ∂T

If Cₚ is treated as a constant and μJ, T is known as a function of P. The integral of the above equation can be evaluated.