VARIATION OF FUGACITY WITH PRESSURE AND VARIATION OF FUGACITY WITH TEMPERATURE

VARIATION OF FUGACITY WITH PRESSURE :-                                                                           The relation between μ and fugacity is given by,

μ = μ⁰ + RTlnf................ (1) 

Differentiating the equation (1) write P At constant T, 

(∂μ/∂P)T = RT ( ∂lnf/∂P)T

We know that ,

(∂μ/∂P)/T = V................. (2)

Hence Equation (2) can be written as, 

RT ( ∂lnf)T  = V

RT ∫ ∂lnf/∂P)T = V/P1 dp. = vdp

RT ∫ ∂lnf = V/P2 dp. = vdp

RTln f₂/f₁ = ∫ p₁ᴾ² vdp.

The equation on to the determination of the fugacity at one pressure from that of another, if 'V' is known as a function of pressure. 

VARIATION OF FUGACITY WITH TEMPERATURE :-

                 Consider two states of the same gas in which the chemical potential are μ and μ*. The corresponding fugacities being f and f* it's related equation, 

μ* − μ = RTln f*/f

Dividing by T and rearranged 

Rln f*/f = ( μ*/T) − (μ/T) 

Differentiating write T at constant P

R (∂ln f*/∂T)P − R(∂lnf/∂T) = [ ∂(μ*)]
                                                       T       −
                                                     ∂T
                                                  [∂(μ)]
                                                (       T     ) P
                                                      ∂T

We know that,

[∂(  μ)]
   (    T  )P     = − μ̄/T²
        T
( gibb's Helmoltz equation)

(∂lnf* ) p* − (∂lnf) p  = H̄*/RT² + H̄/RT²
   ∂T                ∂T

When P* → low P, or Zero

P* →0   f*   = 1
              P*
For a real gas at very low P,
Fugacity becomes equal to P. 

Hence f* doesn't change with T at constant P.

(ie) (∂lnf)P   =  H̄*   −  H̄
        ∂T                 RT²

H̄* is the partial molal enthalpy in the state of almost zero pressure and H̄ is the value at P.

H* − H̄ is the increase in partial molal enthalpy accompanying the isothermal expansion of the gas from a pressure ' P' into vacuum.

H̄* − H̄ = − ∫₀p ( ∂H )T dp
                           ∂P

since ( ∂H) T  = − μⱼ.T cp. 
            ∂P

From above the equation, 

RT² [∂lnf ] P = ∫₀p J,T  . Cp. dp
         ∂T

If Cₚ is treated as a constant and μJ, T is known as a function of P. The integral of the above equation can be evaluated. 

1 comment:

Thanks for reading