DETERMINATION OF FUGACITY

There are different types of methods for the determination of fugacity of gases, liquid mixtures etc.,

1) Graphical method
2) General method
3)From equation of state.

1) (l) GRAPHICAL METHOD :-

                      The fugacity of a real gas is equal to pressure of very low P.

dG = vdp and dG. RTlnf.      
Vdp : RTlnf →
(or) 
∂lnf ,   v  
∂p      RT

A function '∝' is introduced in the above equation which is defined as measure of deviation of real gas from ideal behaviour. 

∝ =   RT   − V   ( ∴ v =  RT   − ∝ )
        P                           P

RTdlnf = (  RT  − ∝ ) dp
                   p
     (or)

dlnf =   dp  −   ∝  . dp.
             p         RT

dlnf = dlnp −   ∝   . dp
                       RT

dlnf - dlnp = -   ∝   dp
                         RT

dlnf  = −   ∝   .dp.
     p         RT

upon ∫ " 

∫ dln  i      −   ∝   ∫₀p  dp
         p          RT

lnf = lnp − ∫₀p   ∝   . dp 
                          RT

f∕p →1 as p→0

The value of integral of the above equation can be evaluated by plotting a graph between p = 0 and p = p gives the value of integral

Then the value of 'f' is can be calculated.

(ll) APPROXIATE CALCULATION METHOD :

∝ =  RT   − v
        P

′ ∝ ′ only constant over a range of moderate P,
Then,
lnf = lnp -   ∝ P 
                   RT
(or)

ln f  = −   ∝. P    → .........(1)
   P           RT

At moderate presuure f/p = 1, temperature

ln =  f   - 1. [lnx ≈ x − 1 when x →1]
   P     P
From equation (1)
 f  −1 = −  ∝ p 
P               RT
Substituting the value of ∝, we get

f =  P² V 
       RT
This method becomes more accurate at low P and High T.

2) GENERAL METHOD :-

Real gas

∝ =  RT  ( 1−   PV  ) → (1)
       P             RT

The compressibility factor ' k' of gases is defined as,

k =   PV  
        RT

So equation (1) becomes,

∝ =  RT  (1− k )
        P

Inserting the value of ∝ in the previous equation,

lnf = lnp - ∫₀p    ∝   . dp.
                         RT

Replacing the ' p' terms in the integrated by corresponding values of reduced P (π)
We get,

lnf = lnp + ∫₀p (  k − 1  . dp)
                             π

Where π = p/p₀

f/p is plotted against reduced pressure.
The compressibility factor for all goes are 
∆G equal at average reduced T and P
3) FROM EQUATION OF STATE :-
if f and f₀ represent the fugacities of a gas at pressure P and P₀ where P₀ is very low value, Then on ∫ .

lnf =  ₚ₀ᵖ∫ᵖ vdp. → (1)                                       f₀   -RT
                                                                            Integrating by parts,     

ₚ₀∫ ᴾ vdp = [ PV]ᵥ₀ⱽ − ᵥₒ∫ ᵛ pdv 

= PV − P₀ V₀ − ᵥₒ∫ ᵛ pdv

Where 'V' terms represent the molar volume. At very low P, P₀V₀ = RT. Therefore, 
lnf/f₀ = 1/RT ( Pv − RT− ᵥₒ∫ ᵛ pdv) →  (2)

At very low P

lnf/f₀ = ln f/P₀
From equation  (2)

ln f/f₀ = 1/RT ( PV − RT− ᵥₒ∫ ᵛ pdv )

lnf = lnP₀ 1/RT ( PV −RT−ᵥₒ∫ ᵛ pdv )  → ( 3)

By means of equation of state, say vaander waal's equation, we express 'P' as a function of V at constant T and the ∫ pdv can be easily calculated from vaander waal's equation of state 

( P + a/v²) ( v− b) = RT

P =  RT   −  a    →   (4)
      v − b     v²
Multiply by dv

Pdv = ( RT   −  a   ) dv                                                   v−b      v²          →(5)      

ᵥₒ∫ ᵛ pdv = ᵥₒ∫ ᵛ (  RT ) dv − ∫  a  . dv
                            v− b             v²                                                                                                   = RTln   v− b   + a/v − a/v⁰   → (6)                              v₀ −b

since v₀ is very large as compared to b. 
So, v₀ − b ≈ v₀
v₀ is equal to RT/P₀ ( P₀ v₀ = RT, v₀ = RT/P₀

a/v₀ can be rejected ,being very small. Therefore equation (6) becomes,                                      
ᵥₒ∫ ᵛ pdv = RTln   v- b  + a/v                                                         v₀   

H* − H̄   is the increase in partial molal enthalpy accompanying the isothermal expansion of the gas from a pressure ' P' into vacuum. 

H̄* − H̄ = − ₀∫ ᴾ (∂H  ) T. dp                                                         ∂P        

Since (∂H )  = − μJ.T . Cp.     
             ∂P
From equation........................... (6)

RT² [ ∂lnf  ]ₚ = ₀∫ ᵖ μJ,T. cp. dp                                 ∂T

If Cp is treated as a constant and μJ, T is known as a function of P. The integral of the above equation can be evaluated. 




             





1 comment:

Thanks for reading