1) Graphical method
2) General method
3)From equation of state.
1) (l) GRAPHICAL METHOD :-
                      The fugacity of a real gas is equal to pressure of very low P.
dG = vdp and dG. RTlnf.      
Vdp : RTlnf →
(or) 
∂lnf ,   v  
∂p      RT
A function '∝' is introduced in the above equation which is defined as measure of deviation of real gas from ideal behaviour. 
∝ =   RT   − V   ( ∴ v =  RT   − ∝ )
        P                           P
RTdlnf = (  RT  − ∝ ) dp
                   p
     (or)
dlnf =   dp  −   ∝  . dp.
             p         RT
dlnf = dlnp −   ∝   . dp
                       RT
dlnf - dlnp = -   ∝   dp
                         RT
dlnf  = −   ∝   .dp.
     p         RT
upon ∫ " 
∫ dln  i      −   ∝   ∫₀p  dp
         p          RT
lnf = lnp − ∫₀p   ∝   . dp 
                          RT
f∕p →1 as p→0
The value of integral of the above equation can be evaluated by plotting a graph between p = 0 and p = p gives the value of integral
Then the value of 'f' is can be calculated.
(ll) APPROXIATE CALCULATION METHOD :
∝ =  RT   − v
        P
′ ∝ ′ only constant over a range of moderate P,
Then,
lnf = lnp -   ∝ P 
                   RT
(or)
ln f  = −   ∝. P    → .........(1)
   P           RT
At moderate presuure f/p = 1, temperature
lnf  =  f   - 1. [lnx ≈ x − 1 when x →1]
   P     P
From equation (1)
 f  −1 = −  ∝ p 
P               RT
Substituting the value of ∝, we get
f =  P² V 
       RT
This method becomes more accurate at low P and High T.
2) GENERAL METHOD :-
Real gas
∝ =  RT  ( 1−   PV  ) → (1)
       P             RT
The compressibility factor ' k' of gases is defined as,
k =   PV  
        RT
So equation (1) becomes,
∝ =  RT  (1− k )
        P
Inserting the value of ∝ in the previous equation,
lnf = lnp - ∫₀p    ∝   . dp.
                         RT
Replacing the ' p' terms in the integrated by corresponding values of reduced P (π)
We get,
lnf = lnp + ∫₀p (  k − 1  . dp)
                             π
Where π = p/p₀
f/p is plotted against reduced pressure.
The compressibility factor for all goes are 
3) FROM EQUATION OF STATE :-
if f and f₀ represent the fugacities of a gas at pressure P and P₀ where P₀ is very low value, Then on ∫ .
lnf = 1  ₚ₀ᵖ∫ᵖ vdp. → (1)                                       f₀   -RT
                                                                            Integrating by parts,     
ₚ₀∫ ᴾ vdp = [ PV]ᵥ₀ⱽ − ᵥₒ∫ ᵛ pdv 
= PV − P₀ V₀ − ᵥₒ∫ ᵛ pdv
Where 'V' terms represent the molar volume. At very low P, P₀V₀ = RT. Therefore, 
lnf/f₀ = 1/RT ( Pv − RT− ᵥₒ∫ ᵛ pdv) →  (2)
At very low P
lnf/f₀ = ln f/P₀
From equation  (2)
ln f/f₀ = 1/RT ( PV − RT− ᵥₒ∫ ᵛ pdv )
lnf = lnP₀ 1/RT ( PV −RT−ᵥₒ∫ ᵛ pdv )  → ( 3)
By means of equation of state, say vaander waal's equation, we express 'P' as a function of V at constant T and the ∫ pdv can be easily calculated from vaander waal's equation of state 
( P + a/v²) ( v− b) = RT
P =  RT   −  a    →   (4)
      v − b     v²
Multiply by dv
Pdv = ( RT   −  a   ) dv                                                   v−b      v²          →(5)      
ᵥₒ∫ ᵛ pdv = ᵥₒ∫ ᵛ (  RT ) dv − ∫  a  . dv
                            v− b             v²                                                                                                   = RTln   v− b   + a/v − a/v⁰   → (6)                              v₀ −b
since v₀ is very large as compared to b. 
So, v₀ − b ≈ v₀
v₀ is equal to RT/P₀ ( P₀ v₀ = RT, v₀ = RT/P₀
a/v₀ can be rejected ,being very small. Therefore equation (6) becomes,                                      
ᵥₒ∫ ᵛ pdv = RTln   v- b  + a/v                                                         v₀   
H* − H̄   is the increase in partial molal enthalpy accompanying the isothermal expansion of the gas from a pressure ' P' into vacuum. 
H̄* − H̄ = − ₀∫ ᴾ (∂H  ) T. dp                                                         ∂P        
Since (∂H )  = − μJ.T . Cp.     
             ∂P
From equation........................... (6)
RT² [ ∂lnf  ]ₚ = ₀∫ ᵖ μJ,T. cp. dp                                 ∂T
If Cp is treated as a constant and μJ, T is known as a function of P. The integral of the above equation can be evaluated. 
  
  
  
Good
ReplyDelete