PARTICLE IN ONE DIMENSIONAL BOX

Consider a particle of mass (m) moving in one direction only inside a box between  x=0, and x=a. boundary conditions.

                              The particle is moving in x axis only, for this particle the wave function ψ and the eigen value E has to be determined.
The fundamental schrodinger equation is, 

∇²ψ +  8π²m   (E−V) ψ= 0................... (1)
             h²
The laplacian operator ∇² is,

∇² =  ∂²  + ∂²  +  ∂² 
        ∂x²    ∂y²    ∂z²

For the particle moving in x axis alone,

∇² =  ∂² 
        ∂x²

Moreover ,the potential energy inside the box is zero,

                    V= 0
Equation (1) becomes, 

   ∂²ψ   +  8π²m  E/ ψ =0
   ∂x²          h²

Let ∝² =   8π²m  E ...........................(1a)
                  h²

∴  ∂²ψ  + ∝²ψ = 0............................. (2)
    ∂x²

The solution for equation (2) is
ψ = Ae i∝ˣ
Expanding,

ψ = A {cos∝x + i sin x }   eiθ = cos + i sin θ

ψ = A cos∝x + i A sin ∝x    [ iA = A’ ] 

ψ = A cos ∝x +A′ sin ∝x   ................(3)

           Now we can consider, the first boundary condition,
When x=0 ; ψ=0

Equation (3) becomes,

0 = A cos ∝ 0 + A′ sin ∝ 0  [cos 0 = 1] [sin 0 = 0 ]
              A = 0 ..................(4)

Therefore equation (3) becomes,
ψ = A' sin∝ x ................... (5)

Consider the secondary boundary conditions, 
When x = 0 ; ψ = 0
Equation (5) becomes,

O = A' sin ∝ a

This means, 

A' ≠ 0 and sin ∝ a = 0

This solution is,

                   ∝ =  nπ  ........ (6)
                            a

Equation (5) becomes,

ψ = A' sin (  nπ ) x   ........   (7)

Solving the above equation the solution is, 

         A' = √ 2/a .................. (8)

Substituting equation (8) in (7)

      Ψ = √2/a sin ( nπ  ) x  .......(9)
                                a

This equation explains the wave nature of the particle moving in the one dimensional box.

The  ∝² and ∝² are   ∝² =  n²π² 
                                            a²

∝ =  nπ    → ∝² =  n²π²    
        a                     a²

Comparing equation (1a)
               ∝² =  8π²m    E
                        h²

Comparing   n²π²  =  8π²m  E
                        a²          h²

      E =  n²h²       ...........(10)
              8ma²

The above the equation is the energy of the particle moving in one dimensional box.

Summary :-

Eigen function, ψ = √2/a sin (  nπ) x
                                                    a

Eigenvalue,     E =  n²h²   
                                8ma²

1 comment:

Thanks for reading