The particle is moving in x and y axis, for this particle the wave function ψ and the eigen value E has to be determined.
The fundamental schrodinger equation is,
∇²Ïˆ + 8Ï€²m (E−V) ψ= 0 ......................(1)
h²
The laplacian operator is,
∇² = ∂² + ∂² + ∂²
∂x₂ ∂y² ∂z²
For the particle moving in x and y axis,
∇² = ∂² + ∂²
∂x² ∂y²
More over the particles inside the box, the potential energy is zero [ v = 0 ]
Therefore,
∂²Ïˆ + ∂²Ïˆ + 8Ï€²m E. ψ = 0............ (2)
∂x² ∂y² h²
The wave function ψ is a function of denoted by x, y. This ψ cannot be solved directly but it can be solved separation of variables method.
ψ (ₓᵧ) = Xx. Yy .......................... (3)
Differentiating equation (3) write x
∂ψ = Y ∂x
∂x ∂x
Again, differntiating equation write. X
∂²Ïˆ = Y ∂²x
∂x² ∂x
Similarly,
∂²Ïˆ = X ∂²y
∂y² ∂y²
Eqution (2) becomes,
Y ∂²x + X ∂²y + 8Ï€²m E. ψ = 0
∂x² ∂y² h²
Dividing the above equation by X, Y.
1 ∂²x + 1 ∂²y + 8Ï€²m E = 0
x ∂x² Y ∂y² h²
1 ∂²x + 1 ∂²y = − 8Ï€²m E ..........(4)
x ∂x² Y ∂y² h²
Let 1 ∂²x = −∝²₁ ; 1 ∂²y = − ∝²₂
x ∂x² y ∂y²
−∝²₁ − ∝²₂ = − 8Ï€²m E
h²
∝₁² + ∝²₂ = 8Ï€²m E .......................(5)
h²
since,
1 ∂²x = − ∝²₁
x ∂x²
∂²x = − ∝₁²x
∂x²
(or)
∂²x + ∝₁² × = 0 ..........................(6)
∂x²
This equation is similar to the problem of the particle in one dimensional box.
For this problem the solutions are already summary known.
Solution of equation (6) is,
Xx = √2/a sin ( nxÏ€ ) x
a
Similarly,
Yy = √2/b sin ( nyÏ€ ) y
b
Therefore, equation (3) becomes,
ψ = 2 sin( nxπ ) x. sin ( nyπ ) y ..... (7)
√a.b a b
Using the solution of the particle in one dimensional box the ∝ values are defined as,
∝₁ = nxÏ€ ; ∝₂ = nyÏ€
a b
Equation (5) becomes,
∝₁² = nx²Ï€² , ∝²₂ = ny²Ï€²
a² b²
nx²Ï€² + ny²Ï€² = 8Ï€²m E
a² b² h²
nx² + ny² = 8mE
a² b² h²
E = ( nx² + ny² ) h² ...............(8)
a² b² 8m
This equation gives the energy of the particle inside the three dimensional box.
Summary :-
Eigen function ;
ψ = 2 sin ( nxπ ) x. sin ( nyπ ) y
√a.b a b
[ Ê‹ = a.b ]
Eigen value ;
E = ( nx² + ny² ) h²
a² b² 8m
No comments:
Post a Comment
Thanks for reading