PARTICLE IN TWO DIMENSIONAL NOX

Consider a particle of mass (m) potential moving inside a two dimensional box along x, y axes upto a, b respect to the..?? 🤔....., 
                      The particle is moving in x and y axis, for this particle the wave function ψ and the eigen value E has to be determined.

      The fundamental schrodinger equation is, 

∇²Ïˆ +  8Ï€²m   (E−V) ψ= 0 ......................(1)
             h²

The laplacian operator is, 

        ∇² =  ∂²  +  ∂²  +  ∂²  
                ∂x₂   ∂y²      ∂z²

For the particle moving in x and y axis,

            ∇² =  ∂²  +  ∂²   
                    ∂x²     ∂y²

More over the particles inside the box, the potential energy is zero  [ v = 0 ]

Therefore,

 ∂²Ïˆ  +  ∂²Ïˆ  +  8Ï€²m  E. ψ = 0............ (2)
∂x²       ∂y²         h²

The wave function ψ is a function of denoted by x, y. This ψ cannot be solved directly but it can be solved separation of variables method.

     Ïˆ (ₓᵧ) = Xx. Yy  .......................... (3)
Differentiating equation (3) write x

         ∂ψ  = Y  ∂x  
         ∂x          ∂x
Again, differntiating equation write. X
           ∂²Ïˆ    = Y  ∂²x  
           ∂x²             ∂x

Similarly,

       ∂²Ïˆ   =  X  ∂²y  
      ∂y²              ∂y²

Eqution (2) becomes,

 ∂²x  + X  ∂²y  +  8Ï€²m  E. ψ = 0
   ∂x²           ∂y²        h²

Dividing the above equation by X, Y. 

 1    ∂²x  +  1    ∂²y   +  8Ï€²m  E = 0
 x    ∂x²      Y    ∂y²         h²

 1   ∂²x  +  1   ∂²y   = − 8Ï€²m  E ..........(4)
 x   ∂x²       Y   ∂y²           h²

Let   1     ∂²x  = −∝²₁ ;  1    ∂²y   = − ∝²₂
         x     ∂x²                 y    ∂y²

−∝²₁ − ∝²₂ = −  8Ï€²m  E
                           h²
∝₁² + ∝²₂ =  8Ï€²m  E .......................(5)
                       h²

since,
               1    ∂²x   = − ∝²₁
                x    ∂x²

               ∂²x  = − ∝₁²x
               ∂x²
    (or)

       ∂²x   + ∝₁² × = 0 ..........................(6)
       ∂x²

This equation is similar to the problem of the particle in one dimensional box.
               For this problem the solutions are already summary known.

Solution of equation (6) is,

        Xx = √2/a  sin (  nxÏ€  ) x
                                      a
Similarly,

            Yy = √2/b sin ( nyÏ€ ) y
                                        b

Therefore, equation (3) becomes,

ψ =   2      sin( nxÏ€ ) x. sin ( nyÏ€ ) y ..... (7)
      √a.b             a                     b

Using the solution of the particle in one dimensional box the ∝ values are defined as,

∝₁ =  nxÏ€   ; ∝₂ =  nyÏ€   
           a                  b
Equation (5) becomes,

∝₁² =  nx²Ï€²   , ∝²₂ =  ny²Ï€²   
            a²                      b²

   nx²Ï€²   +  ny²Ï€²   =  8Ï€²m  E
      a²            b²              h²

        nx²   +  ny²   =   8mE   
         a²         b²            h²

     E = ( nx²    +  ny²  )    h²   ...............(8)
               a²          b²        8m

This equation gives the energy of the particle inside the three dimensional box.

Summary :-

            Eigen function ;

ψ =   2     sin ( nxÏ€  ) x. sin ( nyÏ€ ) y
       √a.b            a                      b

                [ Ê‹ = a.b ]

Eigen value ;

  E = ( nx²   +  ny²  )    h²   
           a²          b²        8m

No comments:

Post a Comment

Thanks for reading