∆G⁰ = − RTln Kp ........................(1)
For one mole of an ideal gases
A= - KT lnQ
Molar partition function Q = qN .....(2)
Nǃ
Applying Stirling's Approximation
ln Nǃ = N ln N−N ; Nǃ = (N )ᴺ
e
A = - KT ln (qe)N.................... (3)
N
For one mole of an ideal gas,
G= A + PV = A+RT.................... (4)
Substituting the value of A from equation (3) into equation (4)we get,
G = - kT ln (qe)N + RT ( Nk= R)
N
=-NkT lnq - NkT + NkT ln N + NkT = -
RT ln (q/N).............. (5)
The expression for free energy of an ideal gas is,
G = E+ PV - TS = E - TS + RT........... (6)
Substitute G= - RT ln (q/N) and E - TS + RT ........ (6)
S = - RT ln (q/N) - RT² ( dlnq )v + R .....(7)
dT
E is the total energy E₀ is the total energy in the Lowes possible level i.e the zero point energy
E - E₀ = RT² (dlnq)v ; E = E₀ + RT² (dlnq )v−
dT. dT
RT+ RT
G = E₀ − RT ln (q/N) ...............(8)
E₀ is taken as the energy of the zero level. For calculating the equilibrium constant for a chemical reaction at a given temperature T, we must know ∆G⁰T. The
∆G⁰T term involves combination of GT⁰ terms for reactants and products. For this reason the difference in zero point energies of the various species must be taken into account.
If the pressure is 1 atm i.e standard conditions,
G⁰ − E⁰ =− R∂ln (q⁰/N) .........(9)
T
For one mole of an ideal gas,
H equal E + PV = E + RT
At standard state, H⁰ = E⁰ + RT
At absolute zero, T = 0. Hence H⁰₀ = E⁰₀ ;
G⁰₀ = H₀⁰ − RT ln (q⁰/N) or
G⁰₀ − H⁰₀ = − R ln (q⁰/N) ........(10) or
T
G⁰ = H⁰₀ − RT ln (q⁰/N)
Consider a reversible reaction,
aA + bB →cC + dD
∆G⁰ for the reaction is given by
∆G⁰ ⁼ (cGc⁰ + dɢ⁰D) − ( aɢA⁰ + bɢB⁰)
G⁰ values for the species A, B, C and D are
G⁰A = H⁰₀A − RT ln (q⁰A) ;
N
Ɠ⁰B = H⁰₀ B − RT ln (qB⁰)
N
ɢ⁰꜀ = H⁰₀ ꜀ - RT ln (q⁰꜀) ; G⁰D = H⁰₀ D − RTln
(qD⁰)
N
∆G₀ = ( cH⁰₀c + dH⁰₀D) − ( aH⁰₀ + bH⁰₀B) −
RT ln [(qc⁰/N)ᶜ(qD⁰/N)d ]
(q⁰A/N)ᵃ(qB⁰/N)ᵇ
∆G₀ = ∆H⁰₀ RT ln [(qc⁰/N)ᶜ(qD⁰/N)ᵈ]
q⁰A/N)ᵃ(qB⁰/N)ᵇ
∆H⁰₀ is enthalpy change at absolute zero, the reactants and products being in their respective standard states.
∆G⁰ = RT ln Kp, ln Kp = − ∆G⁰/RT
ɢ⁰ = H⁰₀ −RT ln (q⁰/N)
No comments:
Post a Comment
Thanks for reading